Theresa AI Agent Technical Specification
Version 1.0 - November 2024
1. System Architecture
1.1 Core Components
System Structure:
├── Base ELIZA Engine
│ ├── Pattern Matching System
│ ├── Response Generator
│ └── Conversation Memory
├── Blockchain Interface
│ ├── Solana Integration
│ ├── Token Verification
│ └── Transaction Handler
├── Property Management System
│ ├── Reservation Handler
│ ├── Access Control
│ └── Resource Manager
└── AI Enhancement Layer
├── Modern NLP Integration
├── Context Understanding
└── Learning Module
1.2 Technical Stack
- Primary Language: Rust
- Blockchain: Solana
- NLP Framework: Custom implementation based on ELIZA
- APIs: RESTful + WebSocket
- Database: RocksDB
- State Management: Redis
2. Core Functionality
2.1 Base AI Capabilities
ELIZA Enhancement:
├── Traditional ELIZA Features
│ ├── Pattern recognition
│ ├── Keyword analysis
│ └── Response templates
├── Modern Enhancements
│ ├── Context awareness
│ ├── Memory system
│ └── Learning capabilities
├── Property Knowledge
│ ├── Land details
│ ├── Facility information
│ └── Activity scheduling
└── Community Management
├── Member profiles
├── Access rights
└── Usage patterns
2.2 Blockchain Integration
pub struct BlockchainInterface {
pub connection: SolanaConnection,
pub program_id: Pubkey,
pub treasury: Pubkey,
// Token verification
pub token_program: Pubkey,
pub nft_program: Pubkey,
// Access control
pub access_rules: HashMap<String, AccessRule>,
pub permission_cache: Cache<Pubkey, Permissions>,
}
pub struct AccessRule {
pub required_tokens: u64,
pub required_nfts: u64,
pub feature_access: Vec<String>,
pub priority_level: u8,
}
3. Interaction Models
3.1 User Interaction Flow
Interaction Pipeline:
1. Input Reception
├── Text processing
├── Intent recognition
└── Context loading
2. Authentication
├── Wallet verification
├── Token balance check
└── Access level determination
3. Processing
├── Pattern matching
├── Context analysis
└── Response generation
4. Action Execution
├── Command processing
├── Blockchain interaction
└── System updates
3.2 Command Structure
Command Categories:
├── Property Management
│ ├── View availability
│ ├── Make reservation
│ └── Access control
├── Community Interaction
│ ├── Member queries
│ ├── Event information
│ └── Support requests
├── Token Operations
│ ├── Balance check
│ ├── Transaction history
│ └── Rewards status
└── System Administration
├── Status reports
├── Maintenance requests
└── Emergency protocols
4. Natural Language Processing
4.1 Pattern Recognition System
class PatternMatcher:
def __init__(self):
self.patterns = {
'property_query': r'(availability|booking|reserve)',
'token_query': r'(balance|rewards|stake)',
'support_query': r'(help|support|issue)',
'emergency': r'(emergency|urgent|immediate)',
}
def match_pattern(self, input_text):
matches = []
for category, pattern in self.patterns.items():
if re.search(pattern, input_text, re.I):
matches.append(category)
return matches
4.2 Response Generation
class ResponseGenerator:
def generate_response(self, intent, context, user_data):
response = {
'text': self.get_response_text(intent),
'actions': self.get_required_actions(intent),
'blockchain_ops': self.get_blockchain_operations(intent),
'priority': self.calculate_priority(intent, user_data)
}
return response
5. Property Management Features
5.1 Reservation System
pub struct ReservationSystem {
pub available_slots: HashMap<DateTime, Vec<PropertyUnit>>,
pub bookings: HashMap<Pubkey, Vec<Booking>>,
pub waiting_list: VecDeque<WaitingListEntry>,
pub maintenance_schedule: HashMap<DateTime, MaintenanceTask>,
}
pub struct Booking {
pub user: Pubkey,
pub unit: PropertyUnit,
pub start_time: DateTime,
pub end_time: DateTime,
pub status: BookingStatus,
pub verification: TokenVerification,
}
5.2 Access Control
pub struct AccessControl {
pub entry_points: HashMap<String, AccessPoint>,
pub active_sessions: HashMap<Pubkey, Session>,
pub access_logs: Vec<AccessLog>,
pub security_alerts: VecDeque<SecurityAlert>,
}
6. Learning and Adaptation
6.1 Memory System
pub struct MemorySystem {
pub short_term: Cache<String, Conversation>,
pub long_term: Database<String, UserProfile>,
pub pattern_memory: LearningPatterns,
pub interaction_history: Vec<Interaction>,
}
pub struct LearningPatterns {
pub successful_patterns: HashMap<String, u64>,
pub failed_patterns: HashMap<String, u64>,
pub context_patterns: HashMap<String, Vec<Context>>,
}
6.2 Adaptation Mechanisms
- Pattern reinforcement
- Response optimization
- Context learning
- User preference tracking
7. Security Features
7.1 Authentication
pub struct SecuritySystem {
pub auth_provider: AuthenticationProvider,
pub session_manager: SessionManager,
pub rate_limiter: RateLimiter,
pub audit_logger: AuditLogger,
}
pub struct AuthenticationProvider {
pub wallet_verifier: WalletVerifier,
pub token_checker: TokenChecker,
pub permission_validator: PermissionValidator,
}
7.2 Privacy Protection
- Data encryption
- Access control
- Audit logging
- Data retention policies
8. Integration Points
8.1 External Systems
Integration Layer:
├── Blockchain
│ ├── Solana RPC
│ ├── Token Program
│ └── NFT Program
├── Property Systems
│ ├── Access Control
│ ├── Monitoring
│ └── Maintenance
├── Community Platform
│ ├── Discord
│ ├── Telegram
│ └── Web Portal
└── Emergency Services
├── Alert System
├── Response Protocol
└── Contact Management
8.2 API Endpoints
endpoints:
- /api/v1/chat:
methods: [POST]
auth: required
rate_limit: 100/hour
- /api/v1/reservations:
methods: [GET, POST, PUT]
auth: required
rate_limit: 50/hour
- /api/v1/access:
methods: [GET, POST]
auth: required
rate_limit: 200/hour
9. Performance Monitoring
9.1 Metrics Collection
- Response time
- Pattern match success rate
- User satisfaction
- System resource usage
9.2 Optimization
- Response caching
- Pattern optimization
- Resource management
- Load balancing
10. Deployment Strategy
10.1 Infrastructure
Deployment Stack:
├── Primary Services
│ ├── AI Core (Rust)
│ ├── Blockchain Interface
│ └── API Gateway
├── Supporting Services
│ ├── Database Cluster
│ ├── Cache Layer
│ └── Message Queue
├── Monitoring
│ ├── Performance Metrics
│ ├── Error Tracking
│ └── Usage Analytics
└── Backup Systems
├── Data Backup
├── Failover Systems
└── Recovery Procedures
10.2 Scaling Plan
- Horizontal scaling
- Load distribution
- Resource optimization
- Performance tuning